Skip to main content

Infrastructure Overview

This guide provides a comprehensive overview of AgentArea’s infrastructure architecture, deployment patterns, and best practices for running a scalable AI agents platform.

πŸ—οΈ Architecture Overview

AgentArea follows a microservices architecture designed for scalability, reliability, and maintainability:

🎯 Deployment Patterns

Development Environment

Single-machine development setup
# docker-compose.dev.yml
version: '3.8'

services:
  agentarea-api:
    build: .
    ports:
      - "8000:8000"
    environment:
      - ENVIRONMENT=development
      - HOT_RELOAD=true
    volumes:
      - ./src:/app/src
      - ./tests:/app/tests
    depends_on:
      - postgres
      - redis

  agentarea-frontend:
    build: ./agentarea-webapp
    ports:
      - "3000:3000"
    environment:
      - NODE_ENV=development
    volumes:
      - ./agentarea-webapp/src:/app/src

  postgres:
    image: postgres:15-alpine
    environment:
      POSTGRES_DB: agentarea_dev
      POSTGRES_USER: dev
      POSTGRES_PASSWORD: dev
    volumes:
      - postgres_dev_data:/var/lib/postgresql/data
    ports:
      - "5432:5432"

  redis:
    image: redis:7-alpine
    ports:
      - "6379:6379"
    volumes:
      - redis_dev_data:/data

volumes:
  postgres_dev_data:
  redis_dev_data:

Staging Environment

Single Node Staging

  • Single Kubernetes node or VM
  • Minimal resource allocation
  • Shared databases and services
  • Perfect for integration testing

Multi-Service Staging

  • Multiple services and replicas
  • Dedicated databases
  • Load testing capabilities
  • Production-like configuration

Production Environment

# Production HA configuration
agentarea:
  api:
    replicas: 3
    resources:
      requests:
        cpu: "500m"
        memory: "1Gi"
      limits:
        cpu: "2"
        memory: "4Gi"
    
    autoscaling:
      enabled: true
      minReplicas: 3
      maxReplicas: 10
      targetCPU: 70
      targetMemory: 80
  
  frontend:
    replicas: 2
    resources:
      requests:
        cpu: "100m"
        memory: "256Mi"
      limits:
        cpu: "500m"
        memory: "512Mi"
  
  mcpManager:
    replicas: 2
    resources:
      requests:
        cpu: "250m"
        memory: "512Mi"
      limits:
        cpu: "1"
        memory: "2Gi"

postgresql:
  architecture: replication
  primary:
    resources:
      requests:
        cpu: "1"
        memory: "2Gi"
      limits:
        cpu: "4"
        memory: "8Gi"
  
  readReplicas:
    replicaCount: 2
    resources:
      requests:
        cpu: "500m"
        memory: "1Gi"

redis:
  architecture: replication
  master:
    resources:
      requests:
        cpu: "250m"
        memory: "512Mi"
  replica:
    replicaCount: 2

πŸ”§ Component Architecture

Core Services

Data Storage

PostgreSQL

Primary data store
  • User accounts and profiles
  • Agent configurations
  • Conversation history
  • System metadata

Redis

Caching and messaging
  • Session management
  • Real-time messaging
  • Background job queues
  • Temporary data storage

Object Storage

File and asset storage
  • Agent training data
  • Conversation attachments
  • System backups
  • Static assets

πŸš€ Scaling Strategies

Horizontal Scaling

# Kubernetes HPA configuration
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: agentarea-api-hpa
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: agentarea-api
  minReplicas: 3
  maxReplicas: 20
  metrics:
  - type: Resource
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 70
  - type: Resource
    resource:
      name: memory
      target:
        type: Utilization
        averageUtilization: 80
  behavior:
    scaleUp:
      stabilizationWindowSeconds: 60
      policies:
      - type: Percent
        value: 100
        periodSeconds: 15
    scaleDown:
      stabilizationWindowSeconds: 300
      policies:
      - type: Percent
        value: 10
        periodSeconds: 60

Vertical Scaling

CPU Optimization

  • Profile application bottlenecks
  • Optimize async operations
  • Use CPU-efficient algorithms
  • Implement proper caching

Memory Optimization

  • Monitor memory usage patterns
  • Implement connection pooling
  • Use memory-efficient data structures
  • Configure garbage collection

🌐 Network Architecture

Service Mesh

# Istio service mesh for microservices
apiVersion: install.istio.io/v1alpha1
kind: IstioOperator
metadata:
  name: agentarea-istio
spec:
  values:
    global:
      meshID: agentarea-mesh
      network: agentarea-network
  components:
    pilot:
      k8s:
        resources:
          requests:
            cpu: 500m
            memory: 2048Mi
    ingressGateways:
    - name: istio-ingressgateway
      enabled: true
      k8s:
        service:
          type: LoadBalancer

# Service mesh policies
apiVersion: security.istio.io/v1beta1
kind: PeerAuthentication
metadata:
  name: default
spec:
  mtls:
    mode: STRICT

CDN and Edge Distribution

Global CDN

  • CloudFlare, AWS CloudFront, or Azure CDN
  • Static asset distribution
  • Edge caching for API responses
  • DDoS protection and WAF

Edge Computing

  • Regional API deployments
  • Edge-based agent processing
  • Reduced latency for users
  • Local data compliance

πŸ’Ύ Data Management

Database Architecture

# Production PostgreSQL settings
postgresql:
  primary:
    configuration: |
      # Connection settings
      max_connections = 200
      shared_buffers = 2GB
      effective_cache_size = 6GB
      
      # Write-ahead logging
      wal_buffers = 16MB
      checkpoint_completion_target = 0.9
      checkpoint_timeout = 10min
      
      # Query optimization
      random_page_cost = 1.1
      effective_io_concurrency = 200
      
      # Monitoring
      log_statement = 'mod'
      log_min_duration_statement = 1000
      
    persistence:
      enabled: true
      size: 1Ti
      storageClass: fast-ssd
    
    resources:
      requests:
        cpu: 2
        memory: 8Gi
      limits:
        cpu: 8
        memory: 16Gi

Caching Strategy

πŸ“Š Resource Management

Resource Quotas

apiVersion: v1
kind: ResourceQuota
metadata:
  name: agentarea-quota
  namespace: agentarea
spec:
  hard:
    # Compute resources
    requests.cpu: "10"
    requests.memory: 20Gi
    limits.cpu: "40"
    limits.memory: 80Gi
    
    # Storage
    requests.storage: 1Ti
    persistentvolumeclaims: "10"
    
    # Objects
    pods: "50"
    services: "20"
    secrets: "20"
    configmaps: "20"

Cost Optimization

Right-Sizing

  • Monitor actual resource usage
  • Adjust CPU and memory requests
  • Use spot instances where appropriate
  • Implement resource cleanup policies

Auto-Scaling

  • Horizontal Pod Autoscaler (HPA)
  • Vertical Pod Autoscaler (VPA)
  • Cluster autoscaler for nodes
  • Schedule-based scaling

πŸ”’ Security Infrastructure

Network Security

πŸ”„ Disaster Recovery

Backup and Recovery

1

Data Backup

  • Automated database backups every 6 hours
  • Point-in-time recovery capability
  • Cross-region backup replication
  • Regular backup verification and testing
2

Application Recovery

  • Infrastructure as Code (IaC) deployment
  • Container image registry backups
  • Configuration and secrets backup
  • Automated recovery procedures
3

Testing and Validation

  • Monthly disaster recovery drills
  • Recovery time objective (RTO): 4 hours
  • Recovery point objective (RPO): 1 hour
  • Documentation and runbooks maintenance

High Availability

Multi-AZ Deployment

  • Services distributed across availability zones
  • Database replication and failover
  • Load balancer health checks
  • Automatic traffic routing

Circuit Breakers

  • Service-to-service communication protection
  • Graceful degradation under load
  • Automatic recovery mechanisms
  • Real-time health monitoring

This infrastructure overview provides the foundation for building scalable, reliable AgentArea deployments. Adapt these patterns to your specific requirements and constraints. Regular review and optimization of your infrastructure is key to maintaining performance and cost efficiency.