Infrastructure Overview
This guide provides a comprehensive overview of AgentAreaβs infrastructure architecture, deployment patterns, and best practices for running a scalable AI agents platform.
ποΈ Architecture Overview
AgentArea follows a microservices architecture designed for scalability, reliability, and maintainability:
π― Deployment Patterns
Development Environment
Docker Compose
Local Kubernetes
Single-machine development setup # docker-compose.dev.yml
version : '3.8'
services :
agentarea-api :
build : .
ports :
- "8000:8000"
environment :
- ENVIRONMENT=development
- HOT_RELOAD=true
volumes :
- ./src:/app/src
- ./tests:/app/tests
depends_on :
- postgres
- redis
agentarea-frontend :
build : ./agentarea-webapp
ports :
- "3000:3000"
environment :
- NODE_ENV=development
volumes :
- ./agentarea-webapp/src:/app/src
postgres :
image : postgres:15-alpine
environment :
POSTGRES_DB : agentarea_dev
POSTGRES_USER : dev
POSTGRES_PASSWORD : dev
volumes :
- postgres_dev_data:/var/lib/postgresql/data
ports :
- "5432:5432"
redis :
image : redis:7-alpine
ports :
- "6379:6379"
volumes :
- redis_dev_data:/data
volumes :
postgres_dev_data :
redis_dev_data :
Using minikube or kind for local testing # Start local Kubernetes cluster
minikube start --cpus=4 --memory=8192
# Install AgentArea using Helm
helm repo add agentarea https://charts.agentarea.ai
helm install agentarea agentarea/agentarea \
--set environment=development \
--set api.replicas= 1 \
--set frontend.replicas= 1 \
--set postgresql.enabled= true \
--set redis.enabled= true
# Port forward for local access
kubectl port-forward svc/agentarea-api 8000:8000
kubectl port-forward svc/agentarea-frontend 3000:3000
Staging Environment
Single Node Staging
Single Kubernetes node or VM
Minimal resource allocation
Shared databases and services
Perfect for integration testing
Multi-Service Staging
Multiple services and replicas
Dedicated databases
Load testing capabilities
Production-like configuration
Production Environment
High Availability
Multi-Region
# Production HA configuration
agentarea :
api :
replicas : 3
resources :
requests :
cpu : "500m"
memory : "1Gi"
limits :
cpu : "2"
memory : "4Gi"
autoscaling :
enabled : true
minReplicas : 3
maxReplicas : 10
targetCPU : 70
targetMemory : 80
frontend :
replicas : 2
resources :
requests :
cpu : "100m"
memory : "256Mi"
limits :
cpu : "500m"
memory : "512Mi"
mcpManager :
replicas : 2
resources :
requests :
cpu : "250m"
memory : "512Mi"
limits :
cpu : "1"
memory : "2Gi"
postgresql :
architecture : replication
primary :
resources :
requests :
cpu : "1"
memory : "2Gi"
limits :
cpu : "4"
memory : "8Gi"
readReplicas :
replicaCount : 2
resources :
requests :
cpu : "500m"
memory : "1Gi"
redis :
architecture : replication
master :
resources :
requests :
cpu : "250m"
memory : "512Mi"
replica :
replicaCount : 2
# Multi-region deployment
regions :
us-west-2 :
primary : true
clusters :
- production-west-1
resources :
api_replicas : 5
frontend_replicas : 3
us-east-1 :
primary : false
clusters :
- production-east-1
resources :
api_replicas : 3
frontend_replicas : 2
eu-west-1 :
primary : false
clusters :
- production-eu-1
resources :
api_replicas : 3
frontend_replicas : 2
database :
primary_region : us-west-2
read_replicas :
- region : us-east-1
lag_tolerance : 5s
- region : eu-west-1
lag_tolerance : 10s
redis :
global_replication : true
sync_timeout : 1s
π§ Component Architecture
Core Services
Data Storage
PostgreSQL Primary data store
User accounts and profiles
Agent configurations
Conversation history
System metadata
Redis Caching and messaging
Session management
Real-time messaging
Background job queues
Temporary data storage
Object Storage File and asset storage
Agent training data
Conversation attachments
System backups
Static assets
π Scaling Strategies
Horizontal Scaling
Application Scaling
Database Scaling
Load Balancing
# Kubernetes HPA configuration
apiVersion : autoscaling/v2
kind : HorizontalPodAutoscaler
metadata :
name : agentarea-api-hpa
spec :
scaleTargetRef :
apiVersion : apps/v1
kind : Deployment
name : agentarea-api
minReplicas : 3
maxReplicas : 20
metrics :
- type : Resource
resource :
name : cpu
target :
type : Utilization
averageUtilization : 70
- type : Resource
resource :
name : memory
target :
type : Utilization
averageUtilization : 80
behavior :
scaleUp :
stabilizationWindowSeconds : 60
policies :
- type : Percent
value : 100
periodSeconds : 15
scaleDown :
stabilizationWindowSeconds : 300
policies :
- type : Percent
value : 10
periodSeconds : 60
# PostgreSQL read replicas
postgresql :
architecture : replication
primary :
persistence :
size : 500Gi
storageClass : fast-ssd
readReplicas :
replicaCount : 3
persistence :
size : 500Gi
storageClass : fast-ssd
# Distribute replicas across zones
affinity :
podAntiAffinity :
preferredDuringSchedulingIgnoredDuringExecution :
- weight : 100
podAffinityTerm :
labelSelector :
matchLabels :
app : postgresql-read
topologyKey : topology.kubernetes.io/zone
# Traefik load balancer configuration
apiVersion : traefik.containo.us/v1alpha1
kind : IngressRoute
metadata :
name : agentarea-api
spec :
entryPoints :
- websecure
routes :
- match : Host(`api.agentarea.com`)
kind : Rule
services :
- name : agentarea-api
port : 8000
# Load balancing strategy
strategy : RoundRobin
# Health check
healthCheck :
path : /health
interval : 30s
timeout : 5s
middlewares :
- name : rate-limit
- name : compression
tls :
certResolver : letsencrypt
Vertical Scaling
CPU Optimization
Profile application bottlenecks
Optimize async operations
Use CPU-efficient algorithms
Implement proper caching
Memory Optimization
Monitor memory usage patterns
Implement connection pooling
Use memory-efficient data structures
Configure garbage collection
π Network Architecture
Service Mesh
Istio Configuration
Service Communication
# Istio service mesh for microservices
apiVersion : install.istio.io/v1alpha1
kind : IstioOperator
metadata :
name : agentarea-istio
spec :
values :
global :
meshID : agentarea-mesh
network : agentarea-network
components :
pilot :
k8s :
resources :
requests :
cpu : 500m
memory : 2048Mi
ingressGateways :
- name : istio-ingressgateway
enabled : true
k8s :
service :
type : LoadBalancer
# Service mesh policies
apiVersion : security.istio.io/v1beta1
kind : PeerAuthentication
metadata :
name : default
spec :
mtls :
mode : STRICT
# gRPC communication between services
apiVersion : networking.istio.io/v1beta1
kind : VirtualService
metadata :
name : agentarea-internal
spec :
hosts :
- mcp-manager.agentarea.svc.cluster.local
http :
- match :
- uri :
prefix : /api/v1/
route :
- destination :
host : mcp-manager.agentarea.svc.cluster.local
port :
number : 8001
timeout : 30s
retries :
attempts : 3
perTryTimeout : 10s
CDN and Edge Distribution
Global CDN
CloudFlare, AWS CloudFront, or Azure CDN
Static asset distribution
Edge caching for API responses
DDoS protection and WAF
Edge Computing
Regional API deployments
Edge-based agent processing
Reduced latency for users
Local data compliance
πΎ Data Management
Database Architecture
PostgreSQL Configuration
Backup Strategy
# Production PostgreSQL settings
postgresql :
primary :
configuration : |
# Connection settings
max_connections = 200
shared_buffers = 2GB
effective_cache_size = 6GB
# Write-ahead logging
wal_buffers = 16MB
checkpoint_completion_target = 0.9
checkpoint_timeout = 10min
# Query optimization
random_page_cost = 1.1
effective_io_concurrency = 200
# Monitoring
log_statement = 'mod'
log_min_duration_statement = 1000
persistence :
enabled : true
size : 1Ti
storageClass : fast-ssd
resources :
requests :
cpu : 2
memory : 8Gi
limits :
cpu : 8
memory : 16Gi
# Automated backup configuration
backup :
schedule : "0 2 * * *" # Daily at 2 AM
retention :
daily : 7
weekly : 4
monthly : 12
yearly : 3
storage :
type : s3
bucket : agentarea-backups
encryption : AES256
compression : gzip
verification :
enabled : true
schedule : "0 4 * * 0" # Weekly verification
restore_test : true
# Point-in-time recovery
pitr :
enabled : true
wal_retention : 7d
archive_storage : s3://agentarea-wal-archive
Caching Strategy
π Resource Management
Resource Quotas
Namespace Quotas
Limit Ranges
apiVersion : v1
kind : ResourceQuota
metadata :
name : agentarea-quota
namespace : agentarea
spec :
hard :
# Compute resources
requests.cpu : "10"
requests.memory : 20Gi
limits.cpu : "40"
limits.memory : 80Gi
# Storage
requests.storage : 1Ti
persistentvolumeclaims : "10"
# Objects
pods : "50"
services : "20"
secrets : "20"
configmaps : "20"
apiVersion : v1
kind : LimitRange
metadata :
name : agentarea-limits
namespace : agentarea
spec :
limits :
- type : Container
default :
cpu : "500m"
memory : "512Mi"
defaultRequest :
cpu : "100m"
memory : "128Mi"
max :
cpu : "4"
memory : "8Gi"
min :
cpu : "50m"
memory : "64Mi"
- type : PersistentVolumeClaim
max :
storage : 100Gi
min :
storage : 1Gi
Cost Optimization
Right-Sizing
Monitor actual resource usage
Adjust CPU and memory requests
Use spot instances where appropriate
Implement resource cleanup policies
Auto-Scaling
Horizontal Pod Autoscaler (HPA)
Vertical Pod Autoscaler (VPA)
Cluster autoscaler for nodes
Schedule-based scaling
π Security Infrastructure
Network Security
π Disaster Recovery
Backup and Recovery
Data Backup
Automated database backups every 6 hours
Point-in-time recovery capability
Cross-region backup replication
Regular backup verification and testing
Application Recovery
Infrastructure as Code (IaC) deployment
Container image registry backups
Configuration and secrets backup
Automated recovery procedures
Testing and Validation
Monthly disaster recovery drills
Recovery time objective (RTO): 4 hours
Recovery point objective (RPO): 1 hour
Documentation and runbooks maintenance
High Availability
Multi-AZ Deployment
Services distributed across availability zones
Database replication and failover
Load balancer health checks
Automatic traffic routing
Circuit Breakers
Service-to-service communication protection
Graceful degradation under load
Automatic recovery mechanisms
Real-time health monitoring
This infrastructure overview provides the foundation for building scalable, reliable AgentArea deployments. Adapt these patterns to your specific requirements and constraints. Regular review and optimization of your infrastructure is key to maintaining performance and cost efficiency.