Building Your First AI Agent
This guide walks you through creating your first AI agent on the AgentArea platform. Weโll cover everything from basic setup to advanced agent behaviors.
๐ฏ What Youโll Learn
By the end of this guide, youโll know how to:
Create and configure AI agents
Set up agent personalities and behaviors
Connect agents to external tools via MCP
Enable multi-agent communication
Deploy and monitor your agents
๐๏ธ Agent Architecture
Every AgentArea agent consists of several key components:
Core Identity
Knowledge Base
Capabilities
Name & Personality : Define who your agent is{
"name" : "Customer Support Agent" ,
"personality" : "helpful, patient, professional" ,
"role" : "customer service representative"
}
Context & Memory : What your agent knows{
"system_prompt" : "You are a customer support agent..." ,
"knowledge_sources" : [ "faq.md" , "product_docs.md" ],
"memory_enabled" : true
}
Tools & Actions : What your agent can do{
"mcp_tools" : [ "web_search" , "email_sender" ],
"api_integrations" : [ "crm_system" , "payment_processor" ],
"agent_communication" : true
}
๐ Creating Your First Agent
Choose a Template
Start with one of our pre-built templates:
Chatbot Simple conversational agent
Task Assistant Agent that can perform specific tasks
Customer Support Specialized for customer service
Data Analyst Agent that can analyze and report on data
Configure Basic Settings
Set up your agentโs identity: curl -X POST http://localhost:8000/v1/agents \
-H "Content-Type: application/json" \
-d '{
"name": "My Assistant",
"template": "task_assistant",
"personality": "helpful and efficient",
"system_prompt": "You are a helpful assistant that can help users with various tasks."
}'
Add Knowledge Sources
Connect your agent to relevant information: curl -X POST http://localhost:8000/v1/agents/{agent_id}/knowledge \
-H "Content-Type: application/json" \
-d '{
"sources": [
{"type": "document", "path": "/docs/user_manual.pdf"},
{"type": "url", "url": "http://localhost:8000/api/docs"},
{"type": "database", "connection": "postgres://..."}
]
}'
Enable Tools & Integrations
Give your agent superpowers with MCP tools: curl -X POST http://localhost:8000/v1/agents/{agent_id}/tools \
-H "Content-Type: application/json" \
-d '{
"mcp_tools": [
{"name": "web_search", "enabled": true},
{"name": "email_sender", "enabled": true, "config": {...}},
{"name": "calendar_manager", "enabled": true}
]
}'
๐จ Customizing Agent Behavior
Personality & Communication Style
Define how your agent communicates:
personality :
tone : "friendly and professional"
style : "concise but thorough"
quirks :
- "Uses emojis sparingly"
- "Always asks clarifying questions"
- "Provides step-by-step guidance"
communication_rules :
- "Always greet users warmly"
- "Confirm understanding before taking action"
- "Provide progress updates for long tasks"
- "Escalate complex issues to human agents"
Knowledge Management
Static Knowledge
Dynamic Knowledge
Learning & Memory
Upload documents, FAQs, and manuals: # Upload a PDF manual
curl -X POST http://localhost:8000/v1/agents/{agent_id}/knowledge/upload \
-F "file=@user_manual.pdf" \
-F "type=manual"
# Add FAQ entries
curl -X POST http://localhost:8000/v1/agents/{agent_id}/knowledge/faq \
-d '{"question": "How do I reset my password?", "answer": "..."}'
Connect to live data sources: {
"live_sources" : [
{
"type" : "api" ,
"url" : "https://api.company.com/status" ,
"refresh_interval" : "5m" ,
"description" : "System status information"
},
{
"type" : "database" ,
"query" : "SELECT * FROM products WHERE active = true" ,
"refresh_interval" : "1h" ,
"description" : "Current product catalog"
}
]
}
Enable continuous learning: {
"memory_settings" : {
"conversation_memory" : true ,
"user_preferences" : true ,
"learning_enabled" : true ,
"feedback_integration" : true
}
}
๐ Multi-Agent Communication
Enable your agents to work together:
Agent-to-Agent Messaging
# Python SDK example
from agentarea import Agent, MessageType
# Create agents
support_agent = Agent( "customer_support" )
billing_agent = Agent( "billing_specialist" )
# Enable communication
support_agent.enable_communication([billing_agent.id])
# Send a message
support_agent.send_message(
to_agent = billing_agent.id,
message = "Customer needs help with billing issue #12345" ,
message_type = MessageType. TASK_REQUEST ,
context = { "customer_id" : "cust_123" , "issue_id" : "12345" }
)
Workflow Orchestration
workflows :
customer_onboarding :
trigger : "new_customer_signup"
agents :
- agent : "welcome_agent"
task : "send_welcome_message"
next : "setup_agent"
- agent : "setup_agent"
task : "guide_initial_setup"
conditions :
- if : "setup_complete"
next : "success_agent"
- if : "needs_help"
next : "support_agent"
- agent : "support_agent"
task : "provide_human_assistance"
escalation : true
๐ ๏ธ Advanced Features
Create your own MCP tools:
# tools/custom_crm.py
from mcp import MCPTool
import requests
class CRMTool ( MCPTool ):
name = "crm_lookup"
description = "Look up customer information in CRM"
def execute ( self , customer_id : str ):
response = requests.get( f "/api/customers/ { customer_id } " )
return response.json()
# Register the tool
agent.register_tool(CRMTool())
Event-Driven Behavior
Respond to external events:
{
"event_handlers" : [
{
"event" : "user_login" ,
"action" : "send_greeting" ,
"conditions" : [ "first_login_today" ]
},
{
"event" : "order_placed" ,
"action" : "send_confirmation" ,
"delay" : "2m"
},
{
"event" : "payment_failed" ,
"action" : "escalate_to_human" ,
"urgency" : "high"
}
]
}
๐ Monitoring & Analytics
Track your agentโs performance:
Conversation Metrics
Response time
User satisfaction scores
Conversation completion rates
Escalation frequency
System Metrics
CPU and memory usage
API call latency
Tool execution success rates
Error rates and types
Dashboard Access
# View agent metrics
curl http://localhost:8000/v1/agents/{agent_id}/metrics
# Export conversation logs
curl http://localhost:8000/v1/agents/{agent_id}/conversations/export
๐ Deployment & Scaling
Development to Production
Test Locally
# Run agent in development mode
agentarea dev start --agent my_agent
Validate Configuration
# Validate agent configuration
agentarea validate --agent my_agent
Deploy to Staging
# Deploy to staging environment
agentarea deploy staging --agent my_agent
Production Deployment
# Deploy to production with scaling
agentarea deploy production --agent my_agent --replicas 3
๐ก Best Practices
Agent Design Tips
Keep agent personalities consistent and clear
Provide comprehensive system prompts
Test with real user scenarios
Monitor and iterate based on feedback
Common Pitfalls
Donโt make agents too complex initially
Avoid overlapping agent responsibilities
Always handle error cases gracefully
Test multi-agent interactions thoroughly
๐ Troubleshooting
Common Issues
๐ Next Steps